skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Menezes, Pradeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Graphene oxide (GO) aerogels were discovered as lightweight, highly porous materials with exceptional mechanical, electrical, and thermal properties. These properties make them suitable for a wide range of advanced applications. This paper discusses GO aerogel synthesis processes, characterization, mechanical properties, applications, and future directions. The synthesis methods discussed include hydrothermal reduction, chemical reduction, crosslinking methods, and 3D printing, with major emphasis on their effects on the aerogel’s structural and functional attributes. A detailed analysis of mechanical characterization techniques is elaborated upon, along with highlighting the effects of parameters such as porosity, crosslinking, and graphene concentration on mechanical strength, elasticity, and stability. Research has been carried out to find GO aerogel applications in various sectors, such as energy storage, environmental remediation, sensors, and thermal management, showcasing their versatility and potential. Additionally, the combination of nanoparticles and doping strategies to improve specific properties is addressed. The review concludes by identifying current challenges in scalability, brittleness, and property optimization and proposes future directions for synthesis innovations. This work will be helpful for researchers and engineers exploring new possibilities for GO aerogels in both academic and industrial areas. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. his study examined six phosphonium-based room-temperature ionic liquids (PRTILs) having trihexyltetradecyl- or tributyltetradecyl-phosphonium cations with saccharinate, salicylate, or benzoate anions, and obtained a feature parameter to correlate their cationic chain length, anionic ring size, and contact angle with tribological properties. PRTILs with trihexyltetradecyl-phosphonium cations had lower coefficient of friction (COF) and wear than PRTILs with tributyltetradecyl- phosphonium cations, a trend attributed to the additional methylene groups providing lower contact angle. For either cation, PRTILs with the saccharinate anion exhibited much lower COF and wear than single-ring anions, due to the formation of a low-shear-strength-tribofilm facilitated by the double-ring structure and sulfur of saccharinate. Overall, this study revealed PRTIL interfacial mechanisms that can be used to identify anion-cation combinations with optimal tribological performance. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Cold spray additive manufacturing (CSAM) has gained significant attention for its rapid solid deposition capabilities. However, the presence of defects such as pores and voids limits its performance, particularly in electrochemical environments. In this study, a novel post-surface treatment, plasma electrolytic oxidation (PEO), was applied and investigated as a feasible solution to overcome these defects. Results demonstrated a successful PEO deposition on cold-sprayed 316L stainless steel (SS) due to the rapid formation and discharge of aluminate electrolytes along the surface. However, due to the severely strained and highly crystalline surface, the electric field that allows for the deposition of Al(OH)42 anions was reduced. As consequence, an uneven and rough deposition took place. Nonetheless, a successful Al2O3 film of 12.30 lm thickness was formed. Experimental tests were further conducted in simulated aqueous and biologicalbased solutions to test the electrochemical resistance of the deposit. Results reveal a noticeable enhancement in corrosion resistance for both solutions. This enhancement can be attributed to the ‘‘postponing’’ and ‘‘blocking’’ effect enabled by the Al2O3 film, which prevented the electrolyte solution from penetrating the CS surface. Collectively, these findings suggest that PEO is indeed a promising technique to mitigate the chemical degradation of CSAM’d 316L SS. 
    more » « less